
1

Minimization;  
Pumping Lemma.



Agenda
2

 Minimization Algorithm
 Guarantees smallest possible DFA for a given 

regular language

 Proof of this fact (Time allowing )

 Pumping Lemma
 Gives a way of determining when certain languages 

are non-regular

 A direct consequence of applying pigeonhole 
principle to automata (Time allowing )



Equivalent States.
Example

3

Consider the accept states c and g.  They are both sinks 
meaning that any string which ever reaches them is 
guaranteed to be accepted later.

Q:  Do we need both states?

a

b

1

d

0,1

e

0,1

1

c

0,1

gf

0

0

0

0
1

1



Equivalent States.
Example

4

A:  No, they can be unified as illustrated below.

Q:  Can any other states be unified because any 
subsequent string suffixes produce identical results?

a

b

1

d 0,1e
1

0,1

cg

f

0

0 0

0
1

1



Equivalent States.
Example

5

A:  Yes, b and f.  Notice that if you’re in b or f then:

1. if string ends, reject in both cases

2. if next character is 0, forever accept in both cases

3. if next character is 1, forever reject in both cases

So unify b with f.

a

b

1

d 0,1e
1

0,1

cg

f

0

0 0

0
1

1



Equivalent States.
Example

6

Intuitively two states are equivalent  if all 
subsequent behavior from those states is the 
same.

Q:  Come up with a formal characterization of 
state equivalence.

a

0,1

d 0,1e
1

0,1

cg

bf

0

0
1



Equivalent States.
Definition

7

DEF:  Two states q and q’  in a DFA M = (Q, S, d, 
q0, F ) are said to be equivalent (or 
indistinguishable) if for all strings u  S*, 
the states on which u ends on when read from 
q and q’  are both accept, or both non-accept.

Equivalent states may be glued together without 
affecting M’ s behavior.



Finishing the Example
8

Q:  Any other ways to simplify the automaton?

a

0,1

d 0,1e
1

0,1

cg

bf

0

0
1



Useless States
9

A:  Get rid of d.

Getting rid of unreachable useless states
doesn’t affect the accepted language.

a

0,1

0,1e

0,1

cg

bf
0

1



Minimization Algorithm.
Goals

10

DEF:  An automaton is irreducible if 
 it contains no useless states, and
 no two distinct states are equivalent.

The goal of minimization algorithm is to create 
irreducible automata from arbitrary ones. 
Later: remarkably, the algorithm actually 
produces smallest possible DFA for the given 
language, hence the name “minimization”.

The minimization algorithm reverses previous 
example.  Start with least possible number of 
states, and create new states when forced to.

Explain with a game:



The Game of MINIMIZE
11

0. All useless players are disqualified.
1. Game proceeds in rounds. 
2. Start with 2 teams:  ACCEPT vs. REJECT.
3. Each round consists of sub-rounds –one 

sub-round per team.
4. Two members of a team are said to agree if 

for a given label, they want to pass the buck 
to same team.  Otherwise, disagree.

5. During a sub-round, disagreeing members 
split off into new maximally agreeing teams.

6. If a round passes with no splits, STOP.



The Game of MINIMIZE
12

a

b

1

d

0,1

e

0,1

1

c

0,1

gf

0

0

0

0
1

1



Minimization Algorithm.
(Partition Refinement) Code

13

DFA minimize(DFA (Q, S, d, q0, F ) )
remove any state q unreachable from q0

Partition P = {F, Q - F } 
boolean Consistent = false
while( Consistent == false )
Consistent = true
for(every Set S  P, char a  S, Set T  P )

Set temp = {q T | d(q,a) S }
if (temp != Ø  && temp != T ) 
Consistent = false
P = (P -T ){temp,T-temp}

return defineMinimizor( (Q, S, d, q0, F ), P )



Minimization Algorithm.
(Partition Refinement) Code

14

DFA defineMinimizor

(DFA (Q, S, d, q0, F ), Partition P )

Set Q’ =P

State q’0 = the set in P which contains q0

F’ = { S  P  | S  F }

for (each S  P, a  S)
define d’ (S,a) = the set T  P  which contains 

the states d’(S,a)

return (Q’, S, d’, q’0, F’ )



Minimization Example

15

Start with a DFA



Minimization Example

16

Miniature version 



Minimization Example

17

Split into two teams.

ACCEPT

vs.

REJECT



Minimization Example

18

0-label doesn’t split

up any teams



Minimization Example

19

1-label splits up

REJECT's



Minimization Example

20

No further splits.  HALT!

Start team

contains

original

start 



Minimization Example.
End Result

21

States of the minimal automata are

remaining teams.  Edges are

consolidated across each team. Accept 

states are break-offs from

original ACCEPT team.



Minimization Example.
Compare

22

100100101



Minimization Example.
Compare

23

100100101



Minimization Example.
Compare

24

100100101



Minimization Example.
Compare

25

100100101



Minimization Example.
Compare

26

100100101



Minimization Example.
Compare

27

100100101



Minimization Example.
Compare

28

100100101



Minimization Example.
Compare

29

100100101



Minimization Example.
Compare

30

100100101



Minimization Example.
Compare

31

100100101

ACCEPTED.



Minimization Example.
Compare

32

10000



Minimization Example.
Compare

33

10000



Minimization Example.
Compare

34

10000



Minimization Example.
Compare

35

10000



Minimization Example.
Compare

36

10000



Minimization Example.
Compare

37

10000

REJECT.



Proof of Minimal Automaton
38

Previous algorithm guaranteed to produce an 
irreducible FA.  Why should that FA be the smallest 
possible FA for its accepted language?

Analogous question in calculus:  Why should a local 
minimum be a global minimum?  Usually not the 
case!



Proof of Minimal Automaton
39

THM (Myhill-Nerode):  The minimization algorithm 
produces the smallest possible automaton for its 
accepted language.

Proof.  Show that any irreducible automaton is the 
smallest for its accepted language L:

We say that two strings u,v  S* are 
indistinguishable if for all suffixes x, ux is in L
exactly when vx is.

Notice that if u and v  are distinguishable, the path 
from their paths from the start state must have 
different endpoints.



Proof of Minimal Automaton
40

Consequently, the number of states in any DFA for L
must be as great as the number of mutually 
distinguishable strings for L.

But an irreducible DFA has the property that every 
state gives rise to another mutually distinguishable 
string!

Therefore, any other DFA must have at least as many 
states as the irreducible DFA �

Let’s see how the proof works on a previous 
example:



Proof of Minimal Automaton.
Example

41

The “spanning tree of strings” {e,0,01,00} is a 
mutually distinguishable set (otherwise 
redundancy would occur and hence DFA would 
be reducible).  Any other DFA for L has 4 
states.

a

0,1

0,1e

0,1

cg

bf
0

1



The Pumping Lemma
Motivation

42

Consider the language 
L1 = 01* = {0, 01, 011, 0111, … }

The string 011 is said to be pumpable in L1 because 
can take the underlined portion, and pump it up 
(i.e. repeat) as much as desired while always 
getting elements in L1.

Q:  Which of the following are pumpable?
1. 01111
2. 01
3. 0



The Pumping Lemma
Motivation

43

0 0

1

0

1. Pumpable:  01111, 01111, 01111, 01111, etc.

2. Pumpable: 01

3. 0 not pumpable because most of 0* not in L1

Define L2 by the following automaton:

Q:  Is 01010 pumpable?



The Pumping Lemma
Motivation

44

0 0

1

0

A:  Pumpable: 01010, 01010.  Underlined 
substrings correspond to cycles in the FA!

Cycles in the FA can be repeated arbitrarily 
often, hence pumpable.

Let L3 = {011,11010,000, e}

Q:  Which strings are pumpable?



The Pumping Lemma
Motivation

45

A: None!  When pumping any string non-
trivially, always result in infinitely many 
possible strings.  So no pumping can go 
on inside a finite set. 

Pumping Lemma give a criterion for when 
strings can be pumped:



Pumping Lemma
46

THM:  Given a regular language L, there is a number 
p (called the pumping number)  such that any 
string in L of length  p is pumpable within its first 
p letters.  In other words, for all u  L with |u |  p 
we we can write:
 u = xyz (x is a prefix, z is a suffix)
 |y |  1 (mid-portion y is non-empty)
 |xy|  p (pumping occurs in first p letters)
 xyiz  L  for all i  0 (can pump y-portion)



Pumping Lemma Proof
47

EX: Show that pal={xS*|x =x R} isn’t regular.
1. Assume pal were regular
2. Therefore it has a pumping no. p
3. But… consider the string 0p10p.  Can this 

string be pumped in its first p letters?  The 
answer is NO because any augmenting of 
the first 0p-portion results in a non-
palindrome

4. (2)(3)  <contradiction>  Therefore our 
assumption (1) was wrong and conclude 
that pal is not a regular language 



Pumping Lemma Template
48

In general, to prove that L isn’t regular:

1. Assume L were regular

2. Therefore it has a pumping no. p

3. Find a string pattern involving the length p 
in some clever way, and which cannot be 
pumped. This is the hard part.

4. (2)(3)  <contradiction>  Therefore our 
assumption (1) was wrong and conclude 
that L is not a regular language



Pumping Lemma Examples
49

Since parts 1, 2 and 4 are identical for any pumping 
lemma proof, following examples will only show part 
3 of the proof.



Pumping Lemma Examples
50

EX:  Show that {a nb n| n = 0,1,2, … } is not regular.

Part 3)  Consider a pb p.  By assumption, we can pump 
up within the first p letters of this string.  Thus we 
get more a’s than b’s in the resulting string, which 
breaks the pattern.



Pumping Lemma Examples
Pumping Down

51

Sometimes it is useful to pump-down instead of 
up.  In pumping down we simply erase the y
portion of the pattern string.  This is allowed 
by setting i = 0 in the pumping lemma:

EX:  Show that {a mb n| m > n} is not regular.
Part 3)  Consider a p+1b p.  By assumption, we 

can pump down within the first p letters of 
this string.  As by assumption y is non-empty, 
we must decrease the number of a’s in the 
pattern, meaning that the number of a’s is less 
than or equal to the number of b’s, which 
breaks the pattern!



Pumping Lemma Examples
Numerical Arguments

52

Sometimes we have to look at the resulting 
pump-ups more carefully:

EX:  Show that {1n| n is a prime number} is not 
regular.

Part 3)  Given p, choose a prime number n 
bigger than p.  Consider 1n.  By assumption, 
we can pump within the first p letters of this 
string so we can pump 1n.  Let m be the length 
of the pumped portion x.  Pumping i times (i = 
0 means we pump-down) results in the string 
1(n-m)+im =1n+(i-1)m.

Q:  Find an i making the exponent non-prime.



Pumping Lemma Examples
Numerical Arguments

53

A:  Set i = n + 1.  Then the pumped-
up string is 

1n+(i-1)m =1n+(n+1-1)m =1n+nm=1n(1+m)

Therefore the resulting exponent is 
not a prime, which breaks the 
pattern.



Proof of Pumping Lemma
54

Consider a graph with n vertices.  Suppose you tour 
around visiting a certain number of nodes.

Q:  How many vertices can you visit before you are 
forced to see some vertex twice?



Proof of Pumping Lemma
55

A:  If you visit n+1 vertices, you must have seen some 
vertex twice.

Q:  Why?



Proof of Pumping Lemma.
Pigeonhole Principle

56

A:  The pigeonhole principle.

More precisely.  Your visiting n+1 vertices defines the 
following function:

f : {1, 2, 3, … , n+1}  {size-n set}

f (i ) = i ‘th vertex visited

Since domain is bigger than codomain, cannot be one-
to-one. 



Proof of Pumping Lemma
57

Now consider an accepted string u.  By assumption L 
is regular so let M be the FA accepting it.  Let p = 
|Q | = no. of states in M.  Suppose |u|  p.  The 
path labeled by u visits p+1 states in its first p 
letters. Thus u must visit some state twice.  The 
sub-path of u connecting the first and second visit 
of the vertex is a loop, and gives the claimed string 
y that can be pumped within the first p letters.


